Peritonitis
● Symptoms and Causes
Pathogen-associated infection in the peritoneum first promotes a wave of polymorphonuclear neutrophils recruited by chemoattractants of bacterial origin or by chemokines, such as the C-X-C motif chemokine ligand (CXCL) 1 and CXCL8, produced mainly by MCs and omental fibroblasts. Neutrophils can use high endothelial venules present in anatomic structures called milky spots or fat-associated lymphoid clusters (FALCs) to enter the peritoneal cavity under the guidance of CXCL1. Neutrophil influx in the peritoneal cavity causes an initial inflammatory response driven by neutrophil-secreted proteases and reactive oxygen species (ROS). Secondly, once entered in peritoneum neutrophils undergo NETosis, which consists of the release of necrotic cell DNA forming a net of aggregated neutrophils able to trap and sequester microorganisms in FALCs, thus limiting their spreading
Peritonitis
● Symptoms and Causes
Pathogen-associated infection in the peritoneum first promotes a wave of polymorphonuclear neutrophils recruited by chemoattractants of bacterial origin or by chemokines, such as the C-X-C motif chemokine ligand (CXCL) 1 and CXCL8, produced mainly by MCs and omental fibroblasts. Neutrophils can use high endothelial venules present in anatomic structures called milky spots or fat-associated lymphoid clusters (FALCs) to enter the peritoneal cavity under the guidance of CXCL1. Neutrophil influx in the peritoneal cavity causes an initial inflammatory response driven by neutrophil-secreted proteases and reactive oxygen species (ROS). Secondly, once entered in peritoneum neutrophils undergo NETosis, which consists of the release of necrotic cell DNA forming a net of aggregated neutrophils able to trap and sequester microorganisms in FALCs, thus limiting their spreading